Tomeki

Low-dimensional and symplectic topology

Low-dimensional and symplectic topology

By Georgia International Topology Conference (2009 University of Georgia)

0 (0 Ratings)
0 Want to read0 Currently reading0 Have read

Publish Date

2011

Publisher

American Mathematical Society

Language

eng

Pages

228

Description:

subjectsCongresses,  Manifolds (Mathematics),  Symplectic and contact topology,  Low-dimensional topology,  Simplexes (Mathematics),  Group theory and generalizations -- Special aspects of infinite or finite groups -- Braid groups; Artin groups. $2 msc,  Manifolds and cell complexes -- Low-dimensional topology -- Knots and links in $S^3$. $2 msc,  Algebraic topology -- Homotopy theory -- Loop space machines, operads. $2 msc,  Manifolds and cell complexes -- Proceedings, conferences, collections, etc. $2 msc,  Manifolds and cell complexes -- Low-dimensional topology -- Invariants of knots and 3-manifolds. $2 msc,  Manifolds and cell complexes -- Differential topology -- Symplectic and contact topology. $2 msc,  Differential geometry -- Symplectic geometry, contact geometry -- Lagrangian submanifolds; Maslov index. $2 msc,  Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds. $2 msc,  Manifolds and cell complexes -- Differential topology -- Equivariant algebraic topology of manifolds. $2 msc,  Topology,  Geometry, differential,  Algebraic topology,  Manifolds and cell complexes -- Proceedings, conferences, collections,  Group theory and generalizations -- Special aspects of infinite or finite groups -- Braid groups; Artin groups,  Differential geometry -- Symplectic geometry, contact geometry -- Lagrangian submanifolds; Maslov index,  Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds,  Algebraic topology -- Homotopy theory -- Loop space machines, operads,  Manifolds and cell complexes -- Low-dimensional topology -- Knots and links in $S^3$,  Manifolds and cell complexes -- Low-dimensional topology -- Invariants of knots and 3-manifolds,  Manifolds and cell complexes -- Differential topology -- Symplectic and contact topology,  Manifolds and cell complexes -- Differential topology -- Equivariant algebraic topology of manifolds,  Manifolds and cell complexes -- Low-dimensional topology -- Knots and links in $S 3$. $2 msc